Bioenergy, Land-Use Change and Food Security

Vantage Point: Views on Food, Fuel and Land Use

24 May, 2011
Webinar Panel organized by the National Biodiesel Board

Keith Kline
Oak Ridge National Laboratory

Acknowledgements: Gbadebo ('Debo) Oladosu, Paul Leiby, Nagendra Singh, Virginia Dale

*This research was supported by the U.S. Department of Energy (DOE) under the Office of the Biomass Program and performed at Oak Ridge National Laboratory (ORNL). Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The views in this presentation are those of the authors, who are also responsible for any errors or omissions.
Roadmap for Talk

• Issues
 – Reliance on oil
 – Food security
 – Deforestation
 – Estimating effects of bioenergy
 – Science and models

• Solutions
Roadmap for Talk

• Issues
 – Reliance on oil
 – Food security
 – Deforestation
 – Estimating effects of bioenergy
 – Science and models

• Common solutions
The U.S. pays dearly in a non-competitive market

- Wealth transfer*
- Long-run GDP losses*
- Disruption costs*
- Military costs
- Foreign policy costs
- Strategic stockpile costs
- Other indirect costs

*Economic costs estimated with the ORNL oil security metrics model

Cartelized, volatile market produces large direct costs to the U.S. economy: up to US$ 500 billion in 2008

Oil imports also:
1. Exacerbate trade deficits
2. Erode US$
3. Transfer wealth to unfriendly regimes

Steps to reduce costs of oil dependence:

- Reduce demand for transportation fuels
 - Fuel economy
 - More flex-fuel, electric-hybrid vehicles

- Diversify sources and accelerate development and use of efficient substitutes for oil *
 - Expand domestic fuel production
 - Reduce industrial and home heating use

Steps to reduce costs of oil dependence:

- Reduce demand for transportation fuels
 - Fuel economy
 - More flex-fuel, electric-hybrid vehicles

- Diversify sources and accelerate development and use of efficient substitutes for oil *
 - Expand domestic fuel production
 - Reduce industrial and home heating use

*Bioenergy markets can help (saving billions per year at the pump)

Du and Hayes, 2011 (CARD, Iowa State University)
Roadmap for Talk

• Issues
 – Reliance on oil
 – Food security
 – Deforestation
 – Estimating effects of bioenergy
 – Science and models

• Common solutions
Food security

- Rising prices, volatility
- Consumers and producers suffer
- Nearly a billion undernourished (FAO)

As long as people are hungry, this issue is not going away!

Volatility in agricultural markets seems to have increased

Extreme price movements of agricultural commodities pose a threat to world food security

Policy measures should improve market functioning and increase countries’ resilience to shocks

Governance issues

- Global supply exceeds requirements
- Distribution, losses, infrastructure, inefficient markets
- All countries in protracted crisis show high levels of food insecurity
- Policy and governance failures contribute to market failures, hunger, poverty

Undernourishment statistics are a product of definitions, methods, models and available data.
Bioenergy and food security

Global Sustainable Bioenergy Project “GSB”

Rather than a threat, could bioenergy be part of the solution?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Insecurity</td>
<td>Alleviate Poverty</td>
</tr>
<tr>
<td></td>
<td>• All wealthy people have access to food</td>
</tr>
<tr>
<td></td>
<td>• All hungry people are poor</td>
</tr>
</tbody>
</table>

Food and Fuel

Developing nation perspective: grow things we can eat AND sell!

“...bioenergy is not only compatible with food production; it can also greatly benefit agriculture in Africa…”

- Dr. Rocio A. Diaz-Chavez, Imperial College, London.

Problem

Food Insecurity

Solutions

Alleviate Poverty

- All wealthy people have access to food
- All involuntarily hungry people are poor

Education

- Agricultural practices
- General

Sustainable & efficient resource use

- Land, soil, water

Biofuels - done right*

- Rural employment
- Rural markets
- Land management Experience

* See: Kline et al. 2009 “In defense of biofuels, done right”

Steps to improve food security

1. Improve rural livelihoods *
 ✓ Agriculture
 ✓ Market access
 ✓ Timely information

2. Reduce risk
 ✓ Social safety net
 ✓ Transform food aid
 ✓ Economic resilience
 • Diversify markets *
 • Expand bases of production *

3. Improve analysis, monitoring (early warning)

4. Improve institutional capacity, policies, market functions

5. Reduce volatility*

*Bioenergy markets can help

Sources: Oxfam 2010; FAO 2009 a and b, FAO 2010 a and b.
Roadmap for Talk

- Issues
 - Reliance on oil
 - Food security
 - Deforestation
 - Estimating effects of bioenergy
 - Science and models

- Common solutions
Deforestation drops, 2005-2010
(FAO Forest Resource Assessment 2010 - Global)

- Global tropical deforestation rate (avg. annual loss) fell > 20% compared to prior decade, led by decline in Brazil (chart below)

![Graph showing deforestation rates](chart.png)

Deforestation rate in Brazil’s Amazon, thousands square km per year

Yellow bar for 2010 indicates preliminary result of analysis.
Global deforestation rate drops 2000-2010 (FAO Forest Resource Assessment 2010)

- Amazon deforestation versus U.S. liquid biofuel output
- Correlation is not causation (need analysis, models, validation)

U.S. Biofuel Production (thousands US gallons per year) Source: Renewable Fuels Association

Threats to forests: governance issues (policy, corruption, poverty, insecurity), fire and pests...

Solutions:
- Rural livelihoods*
- Land tenure
- Inventory & protect key conservation areas*
- Improved governance, local participation and capacity, enforcement
- Land-use plans, soil management, productive uses to reduce fire*

*Bioenergy markets can help

Source: Kline, 2008 California Biomass Collaborative., based on USAID-FAA Sec. 118/119 Reports for 2000-2008. FAO 2010c and forest management and conservation best practices: http://www.fao.org/bestpractices/content/05/05_02_en.htm
Roadmap for Talk

• Issues
 – Reliance on oil
 – Food security
 – Deforestation
 – Estimating effects of bioenergy
 – Science and models

• Solutions
Land cover, land use:

- **Constantly changing**
 - Cropland shifting → becomes fallow → to grassland, eventually → secondary forest → and partially returns to crops...
 - Lines between classes blur, overlap
 - Use / Cover: distinct, different values

- **Difficult to measure**
 - Data aggregated and homogenized
 - Data at different temporal and spatial scales differ greatly, inconsistent

- **Small adjustments in data (available land; assumed carbon stocks) have huge effects on modeling results***

Global LUC emissions revised down, still “guesstimates”

- 90% of current CO2 emissions are from fossil fuel; fossil share rapidly rising

Global data uncertainty: large cropland differences (forest data worse; grassland horrid)

Source: Preliminary results, Johannes Feddema, Geography Department, University of Kansas
Estimates of Global Cropland circa 2000 can vary by over 100% within Agro-Ecological Zones (AEZ)

Global cropland totals range from 11.6 million Km² (MODIS) to 17.4 million Km² (Hurtt), or by +/- 580 million hectares.

Chart prepared by Nagendra Singh, ORNL 2011.
Roadmap for Talk

• Issues
 – Reliance on oil
 – Food security
 – Deforestation
 – Estimating effects of bioenergy
 – Science and models

• Solutions?
Observed LUC is complex, dynamic process

- **Driving first-time conversion:**
 - Limited capacity for governance, policies
 - Extractive (incl. oil/gas) industries
 - Access, biophysical conditions
 - Making/holding land claims
 - Poverty - this is the safety net

- **Major land assets and drivers are omitted from the global economic models used to estimate LUC**

Most remaining forests are public lands: clearing is (a) illegal or (b) policy-driven. Global economic models omit these, other key factors.

Source: Agrawal et al., 2008, Science 320
Example: GTAP Model (Tyner et al. 2010)

Tyner et al., 2010: Figure 1. An overview of the GTAP model
Land use models - constrained by data, filters

Initial Change Drivers
(cultural, technical, biophysical, political, economic, demographic)

Initial Land-Use Change

Ongoing Land-Use Changes

Land cover
(typically measured by remote sensing methods at one place and time)

Global Economic Models

Demand

Prices, Quantities, and Distribution of Goods

Carbon Stocks

Key Filter: LC, carbon, change data

Filters: private land, rents

Filters: LC data, scale, sources

Subsequent Change Drivers

Approximately 4 times > cropland use
Maintained with fire

Source: CBES 2010
http://www.ornl.gov/sci/besd/cbes/
LUC estimates, compared to what?

- Land available for crop expansion without deforestation (previously cleared, underutilized) = 500 to 5000 million hectares\(^{(1)}\)

\(^{(1)}\) Enormous range due to pasture, grassland, marginal land estimates
LUC estimates, compared to what?

- Land available for crop expansion without deforestation (previously cleared, underutilized) = 500 to 5000 million hectares\(^{(1)}\)
 Circle size assumes 1500

- Global land area impacts: [million hectares per year]
 - Fire = 330-430 \(^{(2)}\)
 - Dev./Urban exp. \(^{(1)}\) = 1.5
 - LUC bioenergy est. \(^{(3)}\) = 0.2 (too small to illustrate)

\(^{(1)}\) Enormous range due to pasture, grassland, marginal land estimates

Sources: \(^{(1)}\) Kline et al. 2009; calc. by author based on FAO 2007.
\(^{(2)}\) Giglio et al. 2010. \(^{(3)}\) Tyner et al. 2010 (3 m ha total/14 years)
Science and Models

Science follows a *systematic methodology based on evidence*.*

Models are simplified views of the world, not true representations of complexity.

Models explore specific relationships

– E.g. “shock” prescribed system to estimate biofuel effects on land
– Results reflect assumptions, baseline, input data, conceptual view
– **Science (data + time) needed to assess and verify**

There is no scientific consensus on methods or estimates of indirect land use change from bioenergy**

Don’t forget to look outside!

What LUC is most important?
Farmland, change, drivers ≠ cropland, change, drivers.

US farmland avg. loss 1999-2007: 3.4 M acres per year (USDA NASS 2010).

NRI states that “developed” land class grew 27 M acres 1992-07 as cropland fell by 24 M acres same period (USDA 2009)
Roadmap for Talk

• Issues
 – Reliance on oil
 – Food security
 – Deforestation
 – Estimating effects of bioenergy
 – Science and models

• What are solutions?
Win–Win options

Good policy and governance are key

<table>
<thead>
<tr>
<th>Improve livelihoods, resilience</th>
<th>Build capacity</th>
<th>Reduce volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide incentives (for things we can measure)</td>
<td>Start with what is most important</td>
<td>Cooperate (plenty we can agree on)</td>
</tr>
</tbody>
</table>

Increase system efficiency and system capacity to provide multiple services over long term
Cropland can be net sink (or source) of carbon, with potential to increase C storage

Common Solutions for food and fuel

| Improve soil management | • Tillage intensity
| • Crop mix, rotations, cover crops
| • Land restoration
| • Technology (plants, microbes, biochar) |
| Increase Efficiency | • Open, transparent markets
| • Minimize transaction costs
| • Prioritize, incentivize, measure
| • Reduce inputs, increase yields |
| Diversify | • Uses and markets
| • Substitution options
| • Bases of production |
| Adopt Systems Perspective | • Multi-scale
| • Long-term, adaptive
| • Integrated land-use plans |
Thank you!

Contact information:
Keith L. Kline
ORNL
klinekl@ornl.gov

- Additional information:
 - Resources
 - References
 - One-slide summary
Some Information Resources

- DOE Biomass and Biofuels Program: www.eere.energy.gov/biomass/

- DOE Office of Science, Bioenergy Research Centers: http://genomicsgtl.energy.gov/centers/

- Alternative Fuels Data Center - http://www.eere.energy.gov/afdc/fuels/ethanol.html

- Biomass R&D Initiative: www.biomass.govtools.us

- EERE INFO CENTER: http://www1.eere.energy.gov/informationcenter/
References

- EC 2010. The impact of Land Use Change on Greenhouse Gas Emissions from Biofuels and Bioliquids - Literature review. July 2010 (in-house review conducted for DG Energy as part of the European Commission's analytical work on indirect land use change)
- Feddema, Johnannes. University of Kansas (KU), Geography Dept. faculty home page (accessed January 24, 2011). http://www2.ku.edu/~geography/peoplepages/Feddema_J.shtml#research
References (pg 2)

- Gilbert C. L. 2010a. How to understand high food prices. J. Agric. Econ. 61, 398–425

References (pg 3)

References (pg 4)

Additional Slide: Summary of Key Points
Summary of key points:

- Dependence on imported oil brings high costs
- Global market prices reflect supply/demand issues:
 - Supply constrained by monopolies, weather, policies
 - Demand driven by emerging economies’ and excess liquidity
- Failures of policy, markets and governance underlie food insecurity, deforestation, and poverty
- LC/LU/LCC data are uncertain; models reflect assumptions
 - Analysis of empirical data offers different LUC perspectives
 - Changing world requires adaptive approaches
- Effects of bioenergy on food, forests, climate... can be positive or negative
- Win-win solutions (security + food + fuel + forests + climate + livelihoods...) are possible and needed now
Global LUC emissions are still “guesstimates”

About 90% of current CO2 emissions are from fossil fuel; fossil share rapidly rising. These comparisons ignore terrestrial sink (graph below).

Global land sink estimate varies each year with weather, but typically offsets LUC emissions by factor of about three.